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SUMMARY

The velocity–vorticity formulation is selected to develop a time-accurate CFD 2nite element algorithm
for the incompressible Navier–Stokes equations in three dimensions. The 2nite element implementation
uses equal order trilinear 2nite elements on a non-staggered hexahedral mesh. A second order vorticity
kinematic boundary condition is derived for the no slip wall boundary condition which also enforces
the incompressibility constraint. A biconjugate gradient stabilized (BiCGSTAB) sparse iterative solver
is utilized to solve the fully coupled system of equations as a Newton algorithm. The solver yields
an e@cient parallel solution algorithm on distributed-memory machines, such as the IBM SP2. Three
dimensional laminar �ow solutions for a square channel, a lid-driven cavity, and a thermal cavity
are established and compared with available benchmark solutions. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In the last decade, developments and advancement in computer technology, especially the
availability of the massively parallel machines, have escalated the numerical treatment of
complex �uid �ow problems to a new height. Numerical simulation of incompressible vis-
cous �uid �ow, often associated with practical industrial and environmental applications, is
receiving intense scrutiny to perform in the promising distributed parallel computing envi-
ronment. On the other hand, the 2eld of computational �uid dynamics continues to explore
and exploit uni2ed and geometrically versatile formulations in contention with the notorious
divergence-free velocity 2eld constraint, for the incompressible Navier–Stokes equations in
three dimensions. The velocity–vorticity formulation is chosen with the full intent to resolve
these issues.
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Many diFerent 2nite element algorithms have been introduced in the last decade to predict
viscous incompressible �ows. They may be classi2ed into two major categories: primitive
(velocity-pressure) variable formulations, and derived variable (vorticity) formulations. For
the former, Gresho and Sani [1] point out that the pressure appearing in the incompressible
Navier–Stokes (INS) equations is not a thermodynamic variable. Instead, it functions mathe-
matically as a Lagrangian constraint that instantaneously enforces conservation of mass via a
divergence-free velocity 2eld throughout the entire �ow 2eld at any time. The primary chal-
lenge in all primitive variable INS formulations is to satisfy the continuity equation, ∇·u= 0,
contending with how the pressure variable works in a CFD theory, or working around it. In
sharp distinction, by using the de2nition of vorticity, the continuity equation, and the curl
of the momentum equations, the INS equations can be written exclusively in terms of ve-
locity and vorticity. The isothermal formulation consists of three velocity Poisson equations
and three vorticity transport equations. The thermal form appends the temperature transport
equations.

There are several distinct advantages to using the velocity–vorticity formulation for the
INS equations. First, pressure does not explicitly appear in the 2eld equations, thus di@culties
associated with the determination of the pressure boundary conditions, especially at the out�ow
boundary [2], are avoided. Second, the boundary conditions for the formulation are clearer
and easier to impose than streamvector or vector-potential formulations. Third, it can predict
time-accurate incompressible �ows in three dimensions.

The velocity–vorticity CFD formulation was 2rst reported by Fasel [3] to study the stability
of boundary layers in two dimensions. When the velocity–vorticity formulation is written using
a standard 2nite diFerence construction, a staggered grid spatial discretization is employed to
satisfy the continuity constraint. Using this arrangement, Orlandi [4] obtained a solution for
�ow over a two dimensional backward facing step using a block ADI method. Steady state
solutions for two dimensional driven cavity �ows at Re65000, were reported by Guj and
Stella [5] using the false transient method. Solutions for an axisymmetric �ow in a closed
cylinder was also reported by Daube [6] using the in�uence matrix technique. Solutions for
the three dimensional driven cavity benchmark using a 2nite diFerence method in conjunction
with a staggered grid arrangement were reported by Dacles and Hafez [7] and Napolitano and
Pascazio [8].

Two dimensional viscous �ow solutions using the 2nite element method for velocity–
vorticity form were 2rst reported by Guevremont et al. [9]. Their methods utilized quadratic
2nite elements for the velocity components and linear for the vorticity. The vorticity bound-
ary condition at a no-slip wall was imposed by evaluating the weighted area integral of the
kinematic de2nition of vorticity in terms of velocity in each boundary element. Three di-
mensional viscous �ow solutions for driven cavity �ow at Re= 100 and Re= 400 were also
reported [10].

As mathematically viable as the velocity–vorticity formulation appears, constructing a robust
three dimensional algorithm is a challenge. The isothermal formulation contains six variables.
The system of algebraic equations must be solved fully coupled to guarantee a solenoidal
velocity 2eld. Solving such a fully coupled implicit system on a sequential machine would
be prohibitively expensive. Hence, an e@cient parallel numerical algebra procedure represents
an important issue to be resolved. It is these challenges that motivate this investigation of
a new, time accurate, parallel 2nite element algorithm for the 3D unsteady incompressible
Navier–Stokes equations in velocity–vorticity form.
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The developed 2nite element methodology uses equal order trilinear 2nite elements for
both velocity and vorticity components on a non-staggered hexahedral mesh. A second order
kinematic vorticity boundary condition is derived and shown to enforce the incompressibility
constraint. The biconjugate gradient stabilized (BiCGSTAB) [11] sparse iterative solver is
used for the terminal fully coupled matrix statement, which can be eFectively implemented
on any distributed-memory parallel machine.

This paper derives the formulation and presents the parallel implementation of the implicit
2nite element algorithm. Three dimensional laminar �ow solutions of a square channel, a
lid-driven cavity, and a thermal cavity are computed and compared with available benchmark
solutions.

2. VELOCITY–VORTICITY INS FORMULATION

2.1. Governing equations

The nondimensional, laminar �ow incompressible Navier–Stokes equation system with Boussi-
nesq body-force approximation is,

Continuity:

∇ · u= 0 (1)

Momentum:

@u
@t

+ (u · ∇)u=−∇P +
1
Re

∇2u − Gr
Re2 Oĝ (2)

Energy:

@O
@t

+ (u · ∇)O =
1

RePr
∇2O (3)

where u= u(x; t) = (u; v; w) is the velocity vector 2eld, t is the time, x= (x; y; z) is the spatial
coordinate, O is the potential temperature, ĝ is the gravity unit vector and P is the kinematic
pressure. The nondimensional parameters are Reynolds number (Re), Prandtl number (Pr),
and Grashof number (Gr) de2ned as,

Re=
UrLr
�

; Pr=
�
�
; Gr=

�gQTrL3
r

�2

where Lr and Ur are the reference length and velocity respectively, g is the gravity accelera-
tion, � is the kinematic viscosity, � is the coe@cient of volume expansion, � is the thermal
diFusivity, and QTr is the reference temperature diFerence.

The vorticity vector, �= (Rx;Ry;Rz), is kinematically de2ned as

�=∇× u (4)

Taking the curl of de2nition (4), together with the incompressibility constraint (1) and the
vector identity,

∇×�=∇×∇× u=∇(∇ · u) −∇2u (5)
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yields the velocity vector Poisson equation system

∇2u=−∇×� (6)

Taking the curl of the momentum Equation (2) eliminates any gradient 2eld. Applying Equa-
tion (1) and noting ∇ ·�= 0, the vorticity transport equation is

@�
@t

+ (u · ∇)�− (� · ∇)u=
1
Re

∇2�− Gr
Re2∇×Oĝ (7)

Hence, the velocity–vorticity formulation for the laminar INS equations system with Boussi-
nesq approximation in three dimensions can be written as

∇2u+ ∇×�= 0 (8)

@�
@t

+ (u · ∇)�− (� · ∇)u − 1
Re

∇2�+
Gr
Re2∇×Oĝ= 0 (9)

@O
@t

+ (u · ∇)O − 1
RePr

∇2O = 0 (10)

The formulation is subjected to the initial and boundary conditions,

�(x; 0) = ∇× u(x; 0) (11)

u(xS ; t) = b(xS ; t) (12)

O(xS̃ ; t) = f(xS̃ ; t) (13)

(n̂ · ∇)uC = 0 (14)

n̂ · ∇O|C̃ = 0 (15)

(n̂ · ∇)�|C = 0 (16)

∇ · u(xS ; t) = 0 (17)

∇ ·�(xS ; t) = 0 (18)

n ·�(xS ; t) = n · ∇S × b(xS ; t) (19)

where n̂ is the unit normal to the boundary, S̃ is the boundary surface segment with a known
temperature, f , C̃ is the heat �ux boundary which is assumed to be adiabatic for simplicity,
S is the boundary surface segment for a known velocity 2eld, xS is a spatial point on S, b is
the boundary velocity, and C is the out�ow boundary. When the boundary is a rigid no-slip
solid wall in contact with the �uid, the boundary velocity, b, is zero.

The initial-boundary value formulation (Equations (8)–(19)) thus consists of three Poisson
equations coupling the velocity and vorticity components kinematically, with the continuity
constraint, three vorticity transport equations describing �ow kinetics, and an energy transport
equation. Gunzburger and Peterson [12] point out that the problem is well-posed. However,
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to solve the velocity–vorticity equation system successfully, the boundary condition (19) must
be implemented, the kinematic component of the equation �=∇× u normal to S. Then, the
equivalence of the velocity–vorticity formulation with the original primitive variable form is
assured [13].

2.2. Boundary conditions

Boundary conditions for the velocity Poisson equations are readily available. At the in�ow
boundary, a Dirichlet boundary condition is imposed for a known inlet velocity pro2le. A
homogeneous Neumann boundary condition may be applied at the �ow exit. On solid walls,
no-slip boundary conditions with b= 0 in Equation (12) are appropriate.

In an open square channel, the velocity and vorticity pro2les at the inlet are prescribed with
the assumption that (@w=@x) = 0 = (@w=@y). A homogeneous Neumann boundary condition for
vorticity may be enforced at a �ow exit. However, careful determination of the vorticity
discrete form of the kinematic boundary condition (Equation (19)) at a no-slip wall is critical.

Guj and Stella [14] indicate that a solenoidal velocity 2eld for an arbitrary vorticity dis-
tribution may be assured only by coupling the solution process for the velocity Poisson and
the vorticity transport equations. Daube [6] also points out that the requirement to satisfy the
continuity equation reduces to the boundary condition coupling the velocity and vorticity at a
wall. Therefore, conservation of mass, hence the conservation of the solenoidality of vorticity
2eld, must be enforced implicitly in the bulk of the �ow by the kinematic velocity Poisson
equations, and also imposed explicitly on the boundary of the �uid domain by the kinematic
vorticity boundary condition.

A second order accurate 2nite diFerence vorticity kinematic boundary condition is developed
[15] to complete this formulation. From Equation (19), the vorticity at a no-slip wall is
represented by

�wall = n̂ · ∇S × u (20)

A schematic diagram of a typical �ow geometry is shown in Figure 1, where w0; w1, and w2
represent the computational node points on the wall, next to the wall, and second next to the
wall, respectively, along an axis locally normal to the boundary plane.

For the wall normal parallel to the x-axis, from Equations (20) and (4), the vorticity
components at the wall are

Rx = 0; Ry =−@w
@x
; Rz =

@v
@x

(21)

For the wall normal to the y-axis, the vorticity components are

Rx =
@w
@y
; Ry = 0; Rz =−@u

@y
(22)

hence for the z-axis,

Rx =−@v
@z
; Ry =

@u
@z
; Rz = 0 (23)

The kinematic vorticity boundary condition is imposed following the 2nite element assembly
process by replacement of the discretized nodal vorticity equation weak statement from Equa-
tion (9) at the wall node. These vorticity kinematic equations are obtained via a Taylor series
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Figure 1. Schematic diagram of kinematic vorticity boundaries.

expansion of equations (Equation (20)). A detailed description of derivation for one of the
equations follows; the remainder are given in Reference [15].

The Taylor series expansion for the x-velocity component, u, for the wall normal parallel
to the z-axis is

uw1 = uw0 + Qz
duw0

dz
+

Qz2

2
d2uw0

dz2 + O(Qz)3 (24)

Using Equation (23)

uw1 = uw0 + QzRy;w0 +
Qz2

2
dRy;w0

dz
+ O(Qz)3 (25)

Expanding Ry;w1 in terms of Ry;w0

Ry;w1 = Ry;w0 + Qz
dRy;w0

dz
+ O(Qz)2 (26)

Combining Equations (25) and (26),

uw1 = uw0 + QzRy +
Qz2

2

(
Ry;w1 − Ry;w0

Qz

)
+ O(Qz)3 (27)

the result is

(Ry;w1 + Ry;w0) − 2
Qz

(uw1 − uw0) + O(Qz)2 = 0 (28)
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Hence, for the wall normal parallel to the positive x-axis, the resultant vorticity kinematic
equations are,

Rx;w0 = 0 (29)

(Ry;w1 + Ry;w0) +
2

Qx
(ww1 − ww0) = 0 (30)

(Rz;w1 + Rz;w0) − 2
Qx

(vw1 − vw0) = 0 (31)

For the wall normal parallel to the negative x-axis, the vorticity kinematic equations are,

Rx;w0 = 0 (32)

(Ry;w1 + Ry;w0) − 2
Qx

(ww1 − ww0) = 0 (33)

(Rz;w1 + Rz;w0) +
2

Qx
(vw1 − vw0) = 0 (34)

3. WEAK STATEMENT ALGORITHM

3.1. Galerkin weak statement

With the semi-discrete 2nite element approximation of the state variable,

q(x; t)≈ qh≡
m∑
j=1

Nj(x)tQj(t) (35)

q= {u;�;}; Q= {U;O; T}; U= {U;V;W}; Q= {Ox;Oy;Oz} (36)

the Galerkin weak statement is obtained by minimizing the residual error over the discretized
domain, �h, with the weight function identical to the trial function, Nj(x), is

GWS(uh) ≡ {FU}=
∫
�h
{N}(∇2uh + ∇×�h)dV = 0 (37)

GWS(�h) ≡ {FO}=
∫
�h
{N}

(
@�h

@t
+ (uh · ∇)�h − (�h · ∇)uh

− 1
Re

∇2�h +
Gr
Re2 ∇×Ohĝ

)
dV = 0 (38)

GWS(Oh) ≡ {FT}=
∫
�h
{N}

(
@Oh

@t
+ (uh · ∇)h − 1

RePr
∇2Oh

)
dV = 0 (39)

Substituting Equation (35) for uh and �h and dropping all surface integrals for Dirichlet
and homogeneous Neumann boundary conditions after applying the Green Gauss theorem,
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Equations (37)–(39) become of the form

{FU} = SM
e=1{[c2kke]{U}e + [c20ze]{Oy}e − [c20ye]{Oz}e}= 0 (40)

{FV} = SM
e=1{[c2kke]{V}e + [c20xe]{Oz}e − [c20ze]{Ox}e}= 0 (41)

{FW} = SM
e=1{[c2kke]{W}e + [c20ye]{Ox}e − [c20xe]{Oy}e}= 0 (42)

{FOx} = SM
e=1

{
[c200e]

d{Ox}e
dt

+ ({U}Te [c30x0e] + {V}Te [c30y0e]

+{W}Te [c30z0e]){Ox}e − ({Ox}Te [c30x0e] + {Oy}Te [c30y0e]

+{Oz}Te [c30z0e]){U}e +
1
Re

[c2kke]{Ox}e − Gr
Re2 [c20ye]{T}e

}
= 0 (43)

{FOy} = SM
e=1

{
[c200e]

d{Oy}e
dt

+ ({U}Te [c30x0e] + {V}Te [c30y0e]

+{W}Te [c30z0e]){Oy}e − ({Ox}Te [c30x0e] + {Oy}Te [c30y0e]

+{Oz}Te [c30z0e]){V}e +
1
Re

[c2kke]{Oy}e +
Gr
Re2 [c20xe]{T}e

}
= 0 (44)

{FOz} = SM
e=1

{
[c200e]

d{Oz}e
dt

+ ({U}Te [c30x0e] + {V}Te [c30y0e]

+{W}Te [c30z0e]){Oz}e − ({Ox}Te [c30x0e] + {Oy}Te [c30y0e]

+{Oz}Te [c30z0e]){W}e +
1
Re

[c2kke]{Oz}e
}

= 0 (45)

{FT}e = SM
e=1

{
[c200e]

d{T}e
dt

+ ({U}Te [c30x0e] + {V}Te [c30y0e]

+{W}Te [c30z0e]){T}e +
1

RePr
[c2kke]{T}e

}
= 0 (46)

For any choice of trial space basis {N}, the de2ned element-rank matrices are

[c2kke] =
∫
�e

∇{N} · ∇{N}T dV (47)

[c20xe] =
∫
�e
{N}@{N}T

@x
dV (48)

[c20ye] =
∫
�e
{N}@{N}T

@y
dV (49)

[c20ze] =
∫
�e
{N}@{N}T

@z
dV (50)
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[c200e] =
∫
�e
{N}{N}T dV (51)

[c30x0e] =
∫
�e
{N}@{N}

@x
{N}T dV (52)

[c30y0e] =
∫
�e
{N}@{N}

@y
{N}T dV (53)

[c30z0e] =
∫
�e
{N}@{N}

@z
{N}T dV (54)

3.2. Newton statement

The semi-discretized 2nite element velocity–vorticity weak statements form the following
system of algebraic-ordinary diFerential equations,

{FU} = {RU}= 0 (55)

{FO} = [M ]
d{O}

dt
+ {RO}= 0 (56)

{FT} = [M ]
dT
dt

+ {RT}= 0 (57)

where [M ] is the global (assembled) mass matrix associated with the time term and {RQ} is
the global steady state residual representing all other weak statement terms. Equations (56)
and (57) are systems of ordinary diFerential equations, for which the %-implicit, one step
Euler scheme is used to integrate through the transient solution. The terminal computable
algebraic statements are then,

{FU} = {RU}= [D]{U} + {S(O)}= 0 (58)

{FO} = [M ]{On+1 −On} + Qt{RO}n+% = 0 (59)

{FT} = [M ]{Tn+1 − Tn} + Qt{RT}n+% = 0 (60)

where n denotes the times station tn; tn+1 = tn+Qt, and %= 0:5 represents the trapezoidal rule
while %= 1 represents the fully implicit backward Euler integration scheme.

The residual vector {RQ} is a nonlinear function of the nodal state variable members U;O
and T . Thus, Equations (58)–(60), along with Equation (19), represent a coupled, nonlinear
system of algebraic equations that must be solved iteratively. The Newton–Raphson algorithm
is used and the subsequent procedure is

{Q}0
n+1 = {Q}n; Q≡ (U;V;W;Ox; Oy; Oz; T )

{FQ}0
n+1 = {FQ}n for p= 0; 1; 2; : : : until convergence at time n+ 1
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[JAC] = [JQQ] =
[
@{FQ}
@{Q}

]p
n+1

[JAC]{,Q}p+1
n+1 = −{FQ}pn+1

{Q}p+1
n+1 = {Q}pn+1 + {,Q}p+1

n+1

where [JAC], the jacobian matrix of the terminal non-linear algebraic statement, is symbolli-
cally

[JAC] = [JQQ] =




JUU 0 0 0 JUOy JUOz 0
0 JVV 0 JVOx 0 JVOz 0
0 0 JWW JWOx JWOy 0 0

JOxU JOxV JOxW JOxOx JOxOy JOxOz JOxT

JOyU JOyV JOyW JOyOx JOyOy JOyOz JOyT

JOzU JOzV JOzW JOzOx JOzOy JOzOz 0

JTU JTV JTW 0 0 0 JTT




3.3. Vorticity kinematic boundary conditions

The general form of the vorticity kinematic equations are,

f(Owall) = ax0Ox;w0 + ax1Ox;w1 + ay0Oy;w0 + ay1Oy;w1

+ az0Oz;w0 + az1Oz;w1 + bx0uw0 + bx1uw0

+ by0vw0 + by1vw1 + bz0ww0 + bz1ww1 = 0 (61)

For example, for Equation (28) the coe@cients are

ax0 = ax1 = az0 = az1 = by0 = by1 = bz0 = bz1 = 0

ay0 = ay1 = 1; bx0 =
2

Qz
; bx1 =− 2

Qz

To apply the kinematic vorticity boundary conditions, the weak statement residual vorticity
equations at the boundary nodes where no-slip velocity is imposed are replaced by the Equa-
tion (52). The entire row of the corresponding vorticity component at the boundary node is
zeroed out in the jacobian matrix and replaced appropriately by the coe@cients a and b of
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f(Rwall) at the corresponding entries.

(q) (u) (v) (w) (Rx) (Ry) (Rz)
(· · ·) · · · · · · · · · · · · · · · · · ·
(Ry) JOyU JOyV JOyW JOyOx JOyOy JOyOz

(Ry;wall) 0 · · · ; bx0; bx1; · · · 0 · · · 0 · · · · · · 0 · · · · · · 0 · · · 0 · · · ; ay0; ay1; · · · 0 · · · 0 · · ·
(Ry) JOyU JOyV JOyW JOyOx JOyOy JOyOz

(· · ·) · · · · · · · · · · · · · · · · · ·

4. COMPUTATIONAL PROCEDURE

Parallel computation is carried out on the IBM SP2 at the University of Tennessee (UT),
which has 24 thin nodes and two high nodes. Only the thin nodes are utilized for parallel
computations. Each thin node has 256 MB of memory and is based on a 120 MHz POWER2
SC chip capable of delivering 480 million �oating point operations per second (MFLOPS).
A Single Program Multiple Data (SPMD) computer code was written in FORTRAN in con-
junction with Message Passing Interface (MPI) communications library.

The terminal Newton jacobian for the fully coupled velocity–vorticity formulation is a
7× 7 block matrix. Each jacobian block is a sparse matrix with a large number of zeros. A
compressed row storage scheme is used to minimize memory storage.

The BiCGSTAB sparse Krylov solver is used to compute the solution of Ax= b where
A≡ [JQQ], x≡ ,Q, and b≡−FQ. The major kernel of the solver is a matrix vector multipli-
cation operation which can be e@ciently implemented on the IBM SP2. The stopping criterion
[16] for these iteration methods is

‖rk‖∞ ¡ 2‖b‖∞ (62)

where 2 is the error tolerence relative to ‖b‖, the magnitude of the right hand side residual
vector. For the three dimensional �ow simulations reported herein, conducted in this project,
2 is chosen to be 10−10. In this implementation, the Jacobi (diagonal scaling) preconditioner,
Q= [diag(A)]−1, is used. The eFect of this preconditioning may be small, however it can be
e@ciently implemented in parallel.

5. RESULTS AND DISCUSSIONS

5.1. Square channel 5ow

Three test cases are selected to verify and benchmark performance of the developed par-
allel velocity–vorticity 2nite element formulation for the 3D incompressible Navier–Stokes
equations. Fully developed, and developing �ow in a straight rectangular channel tests valid-
ity and accuracy of the algorithm boundary conditions and the constraint of continuity. The
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Figure 2. Boundary condition for straight channel �ow.

veri2cation steady state fully developed axial (u)-velocity distribution is [17]

u=
48
33

4u(y; z; h)
’

(63)

4u(y; z; h) =
N∑

n=1;3;5
(−1)

n−1
2

[
1 − cosh (n3y=2h)

cosh (n3=2)

]
cos (n3z=2h)

n3 (64)

’= 1 − 192
35

N∑
n=1;3;5

tanh (n3=2)
n5 (65)

where h is the duct half-height and N is a large integer, e.g., N = 200 is used. The uniform
trilinear basis discretization consists of M = 16× 16× 16 elements yielding 4913 nodes and
4096 hexahedral elements. For boundary conditions (Figure 2) the steady state analytical ve-
locity and vorticity pro2les are prescribed across the inlet, and vanishing Neumann conditions
for velocity and vorticity are exact and imposed at the exit plane. Boundary conditions for
the velocity at channel walls are no-slip, hence the kinematic vorticity boundary condition
(Equations (21)–(34)) generalized for wall normal variation, is imposed. The state variable
inside the channel is initialized at zero. A large time step size is taken using the backward
Euler integration rule to compute the steady state solution in a single time step.

The computed center plane solution for the 3D square duct is shown in Figure 3. The
entrance velocity pro2le is propagated throughout the channel to four signi2cant digits. These
data clearly verify that the chosen velocity–vorticity formulation, with the derived second
order vorticity kinematic boundary condition, is indeed mass conserving. Solutions of the
developing channel �ow with a slug inlet pro2le is shown in Figure 4.

5.2. Lid-driven cavity

The lid-driven cavity is a classic 2D benchmark for laminar incompressible �ow. With the
increase of computing capability in recent years, the lid-driven cavity problem has matured
as a standard Re-dependent benchmark for 3D incompressible Navier–Stokes algorithms, c.f.
References [10; 14; 18–21].

The 3D cavity is a unit cube, with the top wall moving parallel to the positive x-axis at
unit velocity, u= 1. The vorticity boundary conditions are kinematic on every node on the
cube walls. The initial condition is zero vorticity everywhere. The top plate velocity generates
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Figure 3. Initial condition and predicted steady state center plane 3D fully developed channel �ow.

Figure 4. Velocity pro2le at the center plane, and planar perspectives, for
3D square channel �ow, Re= 100.

vorticity which propagates throughout until the �ow 2eld reaches a steady state. In the present
study, steady state solutions for Re= 100; Re= 400, and Re= 1000 are computed.

Signi2cant computational resources are required to resolve the complexity of the 3D driven
cavity benchmark. A solution-adapted nonuniform cartesian M = 48× 48× 48 mesh was se-
lected, following coarser mesh tests [15], which contains 110 592 trilinear elements, and the
isothermal Newton statement contains 705 894 equations. The discretized domain is decom-
posed into 12 equal blocks on the y-axis. Each block of M = 48× 4× 48 mesh is assigned
to a processor on the IBM SP2. The total memory requirement is approximately 930 Mbytes,
and 78 Mbytes of local processor memory is required.
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Figure 5. Perspective 3D solution summary for driven cavity problem, Re= 400.

The 3D sectional perspective views for the computed velocity vector and vorticity 2elds
for Re= 400 is shown in Figure 5. The vorticity plots at x-mid-plane for Rx, y-mid-plane for
Ry, and z-mid-plane for Rz fully illustrate the transport of �ow information. Contour lines of
the appropriate vortices shown on each mid-plane on the velocity vector plots correspond to
the 2D streamtraces projected from the 3D velocity vector 2eld.

Two dimensional planar projections of the velocity vector 2eld at Re= 100; Re= 400,
and Re= 1000 on the three centroidal planes of the cube are shown in Figure 6. The
axis of the primary vortex starts in the upper right half region, then gradually moves to-
wards the cube center as the Reynolds number increases. The �ow is fully three

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:99–123



INCOMPRESSIBLE NAVIER–STOKES EQUATIONS IN 3D 113

Figure 6. 2D planar projections of mid-plane velocity vector 2eld for
3D driven cavity, Re= 100; 400; 1000.

dimensional such that secondary vortices turn sidewards in the y-direction and upwards in the
z-direction.

As can be seen in the velocity vector plot on the y–z centroidal plane, a pair of vortices
appear near the centerline and move out towards the lower corners as the Reynolds number
increases. Two small recirculation cells are also emerging at the top corners as the Reynolds
number goes through Re= 400 to Re= 1000.

As for the x–y centroidal plane, at Re= 100 the �ow is returning normally along the x–
y boundary. However, at Re= 400, the �ow is now turning in the z-direction, which results
in a pair of 2D projected vortices from the 3D velocity vectors. A second pair of projected
vortices also appears as the Reynolds number reaches 1000 (Figure 6). Similar velocity vector
patterns for Re= 100; Re= 400, and Re= 1000, are reported by Guj and Stella [14], Fujima
et al. [19], and Jiang et al. [21].

The u-velocity component distribution on the vertical plane centerline has been used as a
measure of solution accuracy for the 3D lid-driven cavity benchmark. For Re= 100, this u-
velocity component data reported by Ku et al. [18], Guj and Stella [10], Fujima et al. [19], and
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Figure 7. 3D mid-plane centerline u-velocity comparison, Re= 100.

Jiang et al. [21] agree quite well with each other. The computed solution from the present
formulation is shown in Figure 7. The present solution matches almost exactly with Jiang
et al. [21]. Very close agreement of the u-velocity value is seen across the entire span of the
vertical z-axis, see Table I. The maximum diFerence is 1:4 per cent at the peak value.

5.3. Parallel implementation performance

For this present algorithm, the �ow 2eld at Re= 100 is started from rest, and the code
could produce the steady-state solution using a single large time step, Qt= 100. A timing
test for the testcase is conducted on the IBM SP2 with 12 processing nodes. It takes an
average of 0:7 s elapsed wall-clock time to complete one single BiCGSTAB iteration with
Jacobi preconditioner. An average of 18 s elapsed time is needed to form and assemble the
jacobian matrix and residual vectors for each Newton step. Another 160 s is estimated for
the overheads. For Re= 100; 11 Newton steps and a total of 2995 BiCGSTAB iterations
are required to converge the extremum Newton error, ,Qmax to 7:5× 10−6 for Ry. Con-
sequently, a total of 41 min on the SP2 was needed to achieve the reported steady-state
solution.

For Re= 400, the admissible time step, Qt= 2:0, was substantially smaller. After 25 time
steps, the steady state is accepted with an extremum Newton residual of ,Q= 4:77× 10−5

for the Ry component. The number of Newton iterations was 113 with 31 065 BiCGSTAB
iterations. The centerline u-velocity pro2le of the present algorithm on the non-uniform
M = 48× 48× 48 mesh solution is compared with Jiang et al. [21] and Fujima et al. [19] in
Figure 8. The negative peak u-velocity predicted by Jiang is 0:2341 while 0:2349 is predicted
by the present algorithm. The agreement is within 0:4 per cent.

For Re= 1000, the admissible time step is further reduced to Qt= 0:1. After 52 time steps,
the steady state was accepted with an extremum ,Q= 1:45× 10−4, requiring 237 Newton
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Table I. U -velocity along the vertical centerline of the 3D driven cavity.

z location Re= 100 Re= 400 Re= 1000

1.00 1:0 1:0 1:0
0.9991 0:9937 0:9893 0:9836
0.9965 0:9747 0:9570 0:9345
0.9922 0:9430 0:9032 0:8535
0.9861 0:8986 0:8286 0:7443
0.9783 0:8417 0:7358 0:6164
0.9688 0:7732 0:6304 0:4851
0.9575 0:6947 0:5207 0:3676
0.9444 0:6087 0:4162 0:2763
0.9297 0:5184 0:3256 0:2144
0.9132 0:4276 0:2540 0:1764
0.8950 0:3399 0:2019 0:1530
0.8750 0:2583 0:1663 0:1369
0.8533 0:1848 0:1419 0:1237
0.8299 0:1200 0:1242 0:1116
0.8047 0:0633 0:1097 0:1001
0.7778 0:0137 0:0965 0:0891
0.7491 −0:0301 0:0836 0:0786
0.7188 −0:0695 0:0704 0:0684
0.6866 −0:1051 0:0564 0:0586
0.6528 −0:1370 0:0411 0:0488
0.6172 −0:1648 0:0238 0:0392
0.5799 −0:1874 0:0036 0:0294
0.5408 −0:2040 −0:0206 0:0192
0.5 −0:2135 −0:05 0:0083
0.4592 −0:2154 −0:0836 −0:0038
0.4201 −0:2109 −0:1190 −0:0174
0.3828 −0:2018 −0:1540 −0:0337
0.3472 −0:1897 −0:1856 −0:0539
0.3134 −0:1759 −0:2108 −0:0792
0.2812 −0:1614 −0:2275 −0:1101
0.2509 −0:1469 −0:2349 −0:1462
0.2222 −0:1327 −0:2336 −0:1849
0.1953 −0:1191 −0:2250 −0:2218
0.1701 −0:1061 −0:2111 −0:2522
0.1467 −0:0938 −0:1937 −0:2719
0.1250 −0:0820 −0:1744 −0:2792
0.1050 −0:0708 −0:1541 −0:2749
0.0868 −0:0620 −0:1337 −0:2608
0.0703 −0:0501 −0:1134 −0:2390
0.0556 −0:0407 −0:0935 −0:2106
0.0425 −0:0320 −0:0745 −0:1772
0.0312 −0:0241 −0:0568 −0:1407
0.0217 −0:0171 −0:0407 −0:1039
0.0139 −0:0111 −0:0268 −0:0697
0.0078 −0:0064 −0:0154 −0:0406
0.0035 −0:0029 −0:0690 −0:185
0.0009 −0:0007 −0:0018 −0:047
0.0000 0:0 0:0 0:0
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Figure 8. 3D mid-plane centerline u-velocity comparison, Re= 400.

Figure 9. 3D mid-plane centerline u-velocity comparison, Re= 1000.

steps. The symmetric centerplane solution is compared with Jiang et al. [21] in Figure 9.
The negative peak u-velocity predicted by Jiang is −0:275. The present algorithm value for
minimum u is −0:279, and both solutions are in very close agreement across the entire vertical
span.
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Figure 10. Non-uniform 2nite element mesh for 3D thermal cavity.

5.4. Thermal-driven cavity

Buoyancy driven �ow due to natural convention is an enclosed 3D rectangular box is the
direct extension of the 2D thermal cavity benchmark. Solutions are parameterized by the
Rayleigh number, Ra=PrGr, for the potential temperature boundary conditions of one and
zero on the front and back walls, along the x-axis, while both side walls along the y-axis and
the �oor and ceiling are adiabatic (Figure 10). Velocity boundary conditions are all no-slip,
and the kinematic vorticity boundary condition is imposed at every boundary node.

The 2rst numerical solution of the 3D thermal cavity problem is reported by Millinson
and de Vahl Davis [22]. Using the Continuity Constraint Method, Williams [23] presents
a solution for the so-called ‘window cavity problem’ at Ra= 1:5× 105. A numerical study
of 3D natural convection for air in the cubic enclosure is reported in Reference [24] for
Rayleigh number from 103 to 106 using a control-volume-based 2nite diFerence staggered
mesh procedure together with a pressure correction algorithm.

The three Poisson equations, three momentum equations with Boussinesq term, and the en-
ergy equation are solved simultaneously. The solution-adapted non-uniform cartesian M = 48×
48× 48 mesh is decomposed into eight rectangular subregions which are assigned to eight
processors for computation on the IBM SP2. The total number of equations is 823,543. Each
process requires a memory storage of 130MB. In the present nondimensionalization, Gr=Re2

and Ra=Re2Pr. The Rayleigh numbers tested are Ra= 1:0× 104, 1:6×105, 1:0× 106, and
1:6× 107 with unit Prandtl number.

A timing test indicates an average of 1:04 s elapsed wall-clock time is required to com-
plete one BiCGSTAB iteration, 34 s to form and assemble the jacobian matrix and residual
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Figure 11. Streamlines for the projected velocity vector 2eld on the symmetry plane Ra= 106.

vectors for each Newton step. Another 290s is estimated for the overheads. For Ra= 104, the
computation is started with a zero initial solution 2eld. For the large Qt= 500, 29 Newton
steps and 4361 BiCGSTAB iterations are taken to achieve a solution converged to extremum
,Q= 8:5× 10−6. Consequently, a total of 1:62h was used. The two dimensional planar projec-
tion, of the velocity vector 2eld for Ra= 104 at the symmetry plane reveals only one single
recirculation cell (Figure 11).

For Ra= 1:6× 105, the Ra= 104 solution is used as the initial condition with time step
of Qt= 50. An additional 66 Newton steps and 5106 BiCGSTAB iterations are needed to
converge to extremum ,Q= 1:9× 10−5. In the symmetry plane, two recirculation cells are
now observed, Figure 11.

For Ra= 106, the previous solution is again used as the initial condition, Qt is reduced to 5.
After 195 Newton steps, the steady-state solution is accepted with extremum ,Q= 4:7× 10−5.
The recirculation cells at the symmetry plane are moving towards the corners, and the
isotherms are packing closer to the Dirichlet walls (Figure 12).

For Ra=1:6× 107, the time step is further reduced to Qt= 0:5. After 100 time steps
with the solution for Ra= 106 as the initial condition, the extremum iterate is
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Figure 12. Streamlines for the projected velocity vector 2eld on the symmetry plane 1046Ra61:6× 107.

,Q= 1:7× 10−3 for Ry. The eFect of the thermal boundary layer to the �ow 2eld is ob-
vious (Figure 11). Recirculation cells are further compressed towards the 2xed temperature
walls.
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Figure 13. Temperature pro2les in the centerline of the symmetry plane for 1046Ra61:6× 107.

The summary streamline plot with projected velocity on the symmetry plane for various
Rayleigh numbers is shown in Figure 11. It shares close resemblance to that of the 2D thermal
cavity reported by Williams [23].

At large Rayleigh numbers, isotherms with sharp gradients near the walls are observed.
The eFect of the thermal boundary layer dominates the �ow 2eld. Recirculation cells clus-
ter near the walls and move towards the corners. The eFect of increasing Rayleigh num-
ber of the temperature pro2le, the u-velocity and the w-velocity components on the sym-
metry plane are shown in Figures 13 and 14. The temperature pro2les at various verti-
cal locations (z-coordinate) on the symmetry plane for Ra= 106 are shown in
Figure 15.

6. CONCLUSIONS

A new parallel 2nite element CFD algorithm in velocity–vorticity form has been developed
for the unsteady, laminar incompressible Navier–Stokes equations in three dimensions. The
incompressibility constraint is enforced through a second order kinematic vorticity boundary
condition discretization imposed at nodes on all walls. This kinematic vorticity boundary
condition enforcement is shown to produce a divergence-free solution.

The fully coupled formulation, which contains seven variables, is solved in parallel on
the IBM SP2 computer. The BiCGSTAB sparse iterative solver is incorporated to yield an
e@cient parallel 2nite element algorithm. An implicit time integration scheme allows the use
of a large time step to achieve a fast steady-state solution for Re6100. Reducing the size of
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Figure 14. Centerline velocity pro2les of the symmetry plane for 1046Ra61:6× 107.

the time step can improve the condition number of the terminal Newton jacobian matrix for
large Reynolds number solutions.

The solution-adapted M = 48× 48× 48 mesh produced these reported results, following
mesh re2nement studies [25]. This mesh density is able to produce solutions of adequate
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Figure 15. Temperature pro2le for Ra= 106 at various z-locations on the symmetry plane.

accuracy for the driven cavity and the thermal cavity benchmarks for the Re and Gr range
selected. The obvious extension of the formulation for the kinematic vorticity condition is to
encompass �ows in arbitrary geometries. The simplicity of the velocity–vorticity formulation,
bearing with the shortfall to solve a fully coupled Newton system, is proven to provide a math-
ematically viable alternative to a primitive variables, CFD-approximate pressure formulation
in a parallel implementation.
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